Skip to main content
Georgi L. Lukov M.D., Ph.D. Biochemistry Program Lead

Georgi Lukov

Associate Professor
Faculty of Sciences

McKay Classroom Building 141

(808) 675-3812

Professional Development

  • 2017 - Present - Associate Professor, Department of Natural Sciences, Brigham Young University-Hawai
  • 2010 - 2017 -Assistant Professor, Department of Biochemistry and Physical Science, Brigham Young University-Hawaii
  • 2006 – 2010 - Postdoctoral Research Associate, Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
  • 2001 – 2005 - Ph.D., Biochemistry, Brigham Young University, Provo, Utah
  • 1991 – 1997 - M.D., Medical University, Plovdiv, Bulgaria

Research Interest

My current research is focused on three main areas:

  1. Vector design.
  2. Chaperon assisted protein folding.
  3. Post-translations modification and processing of the LYL1 transcription factor.

Vector Design

Often in cell-based or animal-model functional studies the co-expression of two or more genes is desired. In addition, for tracking purposes, co-expression of a marker can be essential. Current commercial vectors, with the help of an internal ribosomal entry site (IRES), allow simultaneous expression of up to two genes. The objective of this project is to design vectors with the ability to express three or more genes at the same time.

Chaperon assisted protein folding

Our previous research has shown that the Phosducin-like protein (PhLP) acts as a co-chaperone in the process of G-beta protein folding by the cytosolic chaperoning complex, CCT. Our current work is focused on understanding the collaborative work of CCT and PhLP as protein chaperones for G-beta and perhaps other proteins?

Post-translations modification and processing of the LYL1 transcription factor

Our goal is to understand how the expression and the activity of the Lymphoblastic leukemia 1 gene, LYL1, are regulated posttranslationally. Specifically, identifying and functionally characterizing posttranslational modifications such as, phosphorylation, ubiquitination and sumoylation, and their effect on LYL1 stability and degradation. We are also trying to understand the mechanisms responsible for LYL1 overexpression in leukemic cells.

Current Classes

  • CHEM 100 – The World of Chemistry
  • CHEM 101 – Introduction to General Chemistry
  • CHEM 105L – General Chemistry I Laboratory and Recitation
  • CHEM 106L – General Chemistry II Laboratory and Recitation
  • CHEM 381 – Biochemistry I
  • CHEM 381L – Biochemistry Laboratory I
  • CHEM 382 – Biochemistry II
  • CHEM 382L – Biochemistry Laboratory II
  • CHEM 491L- 494L – Undergraduate Research

Research Group

Current Members:

  • Sai Lun Lee (Eddie)
  • Wai Ying Tsang (Ruby)
  • Priscilla TandimaBeatrice Phoong

Past Members:

Jorey Cunico - graduated; currently, Pathology Tech, Intermountain Healthcare, Salt Lake City, UtahSamuel (AJ) Patha - graduated; currently, graduates student, Masters in Public Health, BYU, ProvoTsz Yin Chan - graduated; currently, Biochemistry Ph.D. student at BYU, ProvoTsz Ming Tsang (Jeremy) - graduated; currently, Biochemistry Ph.D. student at BYU, ProvoKaeo Everett - graduated; currently, Biochemistry Ph.D. student at BYU, ProvoWai Shun Mak (Wilson) - graduated; currently, Bio-organic Ph.D. student at University of California, DavisKwok Ching Lam (Rex) - graduated; currently, graduate student, Nursing, Chinese University of Hong KongMaheshwari Rajan - returned to India

Publications

  • Zohren, F., Souroullas, G.P., Luo, M., Gerdemann, U., Imperato, M.R., Wilson, N.K., Gottgens, B., Lukov, G.L., Goodell, M.A. "Lymphoblastic leukemia 1 (Lyl1) regulates lymphoid specification and maintenance of early T lineage progenitors" – Nat Immunol. 2012, 13, 761-769
  • King, K.Y., Baldridge, M.T., Weksberg, D.C., Chambers, S.M., Lukov, G.L., Wu, S., Boles, N.C., Jung, N.C., Qin, J., Liu, D., Songyang, Z., Eissa, N.T., Taylor, G.A., Goodell, M.A. “Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling” – Blood, 2011, 118, 1525-1533.
  • Boles, N.C., Lin, K.K., Lukov, G.L., Bowman, T.V., Baldridge, M.T., Goodell, M.A. “CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation” – Blood, 2011, 118, 80-87.
  • Sirin, O., Lukov, G.L., Mao, R., Conneely, O.M., Goodell, M.A. “The orphan nuclear receptor Nurr1 restricts the proliferation of hematopoietic stem cells” – Nat Cell Biol. 2010, 12, 1213-1219
  • Lukov, G.L., Rossi, L., Souroullas, G.P., Mao, R., Goodell, M.A. ” The expansion of T-cells and hematopoietic progenitors as a result of overexpression of the lymphoblastic leukemia gene, Lyl1 can support leukemia formation” – Leuk. Res. 2011, 35, 405-412
  • Lukov, G.L., Goodell, M.A. ” LYL1 degradation by the proteasome is directed by a N-terminal PEST rich site in a phosphorylation-independent manner” – PLoS ONE 2010, 5, e12692.
  • Lukov, G.L., Baker, C.M., Ludtke, P.J., Hu, T., Carter, M.D., Hackett, R.A., Thulin, C.D., Willardson, B.M. ”Mechanism of assembly of G protein bg subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex” J. Biol. Chem. 2006, 281, 22261-22274.
  • Lukov, G.L., Hu, T., McLaughlin, J.N., Hamm, H.E., Willardson, B.M. ”Phosducin-like protein acts as a molecular chaperone for G protein bg dimer assembly” EMBO J. 2005, 24, 1965-1975.
  • Carter, M.D., Southwick, K., Lukov, G., Willardson, B.M., Thulin, C.D. ”Identification of phosphorylation sites on phosducin-like protein by QTOF mass spectrometry” J. Biomol. Tech. 2004, 4, 257-264.
  • Lukov, G.L., Myung, C.S., McIntire, W.E., Shao, J., Zimmerman, S.S., Garrison, J.C., Willardson, B.M. ”Role of the isoprenyl pocket of the G protein beta gamma subunit complex in the binding of phosducin and phosducin-like protein” Biochemistry 2004, 43, 5651-5660.